Lösungen zum Übungsblatt

- **1.** a) G_f hat als Asymptoten die beiden Koordinatenachsen, also keine schrägen Asymptoten.
 - b) G_f hat als Asymptoten die Gerade g und die y-Achse.
 - c) $f(x) = 3x + 1 + \frac{1}{x}$: G_f hat als Asymptoten g und die y-Achse.

d)
$$\frac{x^2}{x^2 - 4} = \frac{x^2 - 4 + 4}{x^2 - 4} = 1 + \frac{4}{x^2 - 4}$$
; $f(x) = 3x + 2 + \frac{4}{x^2 - 4}$:

 G_f hat als schräge Asymptote die Gerade g^* : y = 3x + 2(und außerdem zwei senkrechte Asymptoten).

- **2.** a) falsch: $D_{f max} = \mathbb{R} \setminus \{-1; 2\}$
 - b) wahr: $0 \in D_f$ und $f(0) = \frac{3 \cdot 0 + 6}{(0 2)(0 + 1)^2} = \frac{6}{-2} = -3$
 - c) falsch: G_f besitzt zwei senkrechte Asymptoten mit den Gleichungen x = 2 und x = -1.
 - d) wahr: $\lim_{x \to +\infty} f(x) = 0$
 - e) wahr: Nullstelle ist x = -2.
 - f) wahr: $f(3) = \frac{15}{1.16} = \frac{15}{16}$; $A_{ABC} = \frac{1}{2} \cdot 3 \cdot \frac{15}{16} = \frac{45}{32}$
- **3.** Die durchschnittliche tägliche Längenzunahme (in $\frac{mm}{d}$) betrug

a)
$$\frac{f(5) - f(0)}{5} = \frac{19 - 0}{5} = 3$$

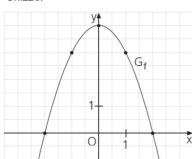
a)
$$\frac{f(5) - f(0)}{5} = \frac{19 - 0}{5} = 3.8$$
 b) $\frac{f(10) - f(5)}{5} = \frac{80 - 19}{5} = 12.2$ c) $\frac{f(10) - f(0)}{10} = 8.0$

c)
$$\frac{f(10) - f(0)}{10} = 8.0$$

6. a) x 0 25 55 100 200 300 Blutalkoholgehalt nach 0.0 25.5 30.5 27.0 15,0 2,5 x min (in g)

Mittlere Änderungsrate (in g min-1):

$$(1) \frac{25,5-0,0}{25,0} = 1,02$$


$$(2) \frac{30,5-0,0}{55,0} \approx 0,55$$

$$(3) \frac{27,0-30,5}{100-55} \approx -0.08$$

$$(4) \frac{15,0-0,0}{200-0} = 0,075 \approx 0,08$$

(1)
$$\frac{25,5-0,0}{25-0} = 1,02$$
 (2) $\frac{30,5-0,0}{55-0} \approx 0,55$ (3) $\frac{27,0-30,5}{100-55} \approx -0,08$ (4) $\frac{15,0-0,0}{200-0} = 0,075 \approx 0,08$ (5) $\frac{2,5-15,0}{300-200} = -0,125 \approx -0,13$

- b) Da die Sekante durch (25 | 25,5) und (82 | 29,5) (etwa) parallel zur Sekante durch O (0 | 0,0) und (200 | 15,0) ist, ist die mittlere Änderungsrate im Intervall [25; 82] (etwa) ebenso groß wie im Intervall [0; 200].
- c) $\frac{y}{0.7 \cdot 80} = 0.5$; y = 28; $(x_1 \approx 33)$; $x_2 \approx 94$: Nach gut eineinhalb Stunden ist Sepp wieder fahrtüchtig.
- 7. Skizze:

Anmerkung: Mögliches Beispiel für eine Funktion ist

f:
$$f(x) = 4 - x^2$$
; $D_f = \mathbb{R}$.