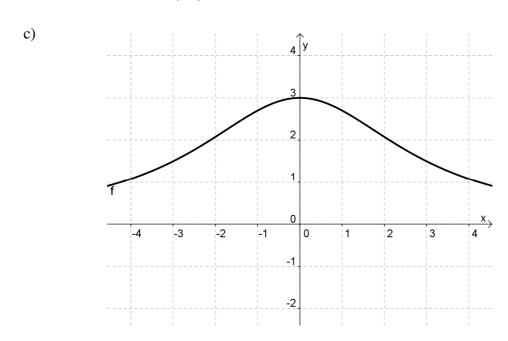
Klasse	Art	Schwierigkeit	Thema	
11	Üben	xxx	Gebrochen-rationale Funktionen 1	W3

Gegeben ist die Funktion f:
$$f(x) = \frac{27}{9 + x^2}$$
; $D_f = \mathbb{R}$

- a) Begründen Sie, dass gilt: $0 < f(x) \le 3$ für jeden x-Wert aus D_f .
- b) Zeigen Sie, dass Gf symmetrisch zur y-Achse ist.
- c) Fertigen Sie mit Hilfe des TR's eine Zeichnung von Gf an.
- d) Finden Sie heraus, wie viele Punkte G_f mit der Parabel Pa mit der Gleichung $y=ax^2$, $a \in \mathbb{R}^+$ gemeinsam hat. Kontrollieren Sie Ihr Ergebnis mit Hilfe eines Funktionsplotters.

Klasse	Art	Schwierigkeit	Thema	
11	Lösung	XXX	Gebrochen-rationale Funktionen	W3

- a) f(x) > 0, da sowohl der Zähler (27) als auch der Nenner (9 + x^2) immer positiv sind. $f(x) \le 3$, da (9 + x^2) ≥ 9 \Rightarrow Behauptung
- b) Ansatz $f(-x) = \frac{27}{9 + (-x)^2} = \frac{27}{9 + x^2} = f(x) \implies G_f$ ist achsensymmetrisch zur y-Achse.



d) Parabeln der Gleichung y= ax^2 , $a \in \mathbb{R}^+$ sind nach oben offene Parabeln mit dem Scheitel S(0/0). Diese schneiden G_f immer in 2 Punkten.

Rechnung: f(x) = y

$$\frac{27}{9+x^2} = ax^2 / (9+x^2)$$

$$27 = 9ax2 + ax4$$

$$ax4 + 9ax2 - 27 = 0$$

Substitution:
$$x^2 = t$$
: $at^2 + 9at - 27 = 0$

Löse quadratische Gleichung : Diskriminante $D = 81a^2 + 108a > 81a^2$

Lösungsformel: $t_1 = \frac{-9a + \sqrt{D}}{2a} > 0$ $t_2 = \frac{-9a + \sqrt{D}}{2a} < 0$

Rücksubstitution: $x^2 = t_1 > 0$ hat 2 Lösungen

$$x^2 = t_1$$
 <0 hat keine Lösung

Ergebnis: Es gibt zwei x-Werte für Schnittstellen und somit zwei Schnittpunkte.

Skizzen: $a_1 = 1$: $g(x) = x^2$; $a_2 = 0.25$: h(x) = 0.25 x^2 ; $a_3 = 3$: p(x) = 3 x^2

