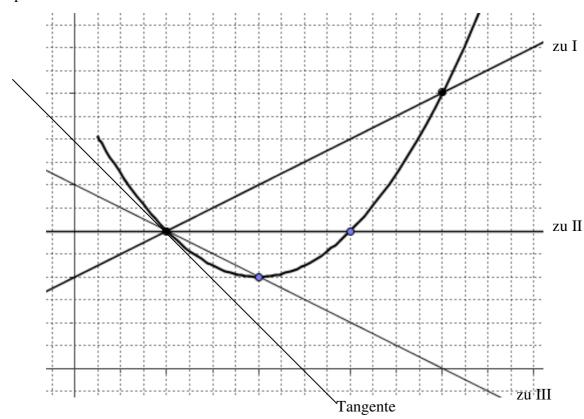
2. Differentialquotient und lokale Änderungsrate

Bsp:
$$f(x) = f(x) = \frac{1}{4}x^2 - 2x + 6$$

Graph:



Intervall	Steigung m
I: [2; 8]	$m_1 = \frac{f(b) - f(a)}{b - a} = \frac{f(8) - f(2)}{8 - 2} = \frac{6 - 3}{8 - 2} = 0,5$
II: [2; 6]	$m_2 = \frac{f(6) - f(2)}{6 - 2} = 0$
III: [2; 4]	$m_3 = \frac{f(4) - f(2)}{4 - 2} = -0.5$
lokal: (Stelle $x_0 = 2$)	$m_{Tangente} = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} \approx -1$

Die Steigung der Tangente an den Graph an der Stelle x = 2 ergibt sich aus dem Grenzwert einer gebrochenrationalen Funktion mit der Definitionslücke x = 2: (Mündlich: Loch, da Nenner und Zähler Nullstelle bei x = 2 haben)

$$\frac{f(x) - f(2)}{x - 2} = \frac{\frac{1}{4}x^2 - 2x + 6 - 3}{x - 2} = \frac{\frac{1}{4}x^2 - 2x + 3}{x - 2} = \frac{\frac{1}{4}x^2 - 2x + 3}{x - 2} = \frac{1}{4}x - 1,5$$

$$m_{Tangente} = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \left(\frac{1}{4} x - 1.5 \right) = -1$$

Definitionen:

- 1. Wenn für eine Funktion f an der Stelle x_0 der Grenzwert $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ der mittleren Änderungsrate existiert, dann heißt er <u>Differentialquotient oder lokale (momentane)</u> Änderungsrate von f an der Stelle x_0 (Bezeichnung: m_{x0})
- 2. Die Gerade durch den Punkt P_0 ($x_0/f(x_0)$) mit der Steigung m_{x0} heißt <u>Tangente</u> an den Graphen in P_0 .
- 3. Die Tangentensteigung m_{x0} wird als <u>Steigung des Graphen</u> im Punkt P_0 bezeichnet.