Kümmung, Wendepunkte und 2. Ableitung

Bei Motorradrennen lässt sich beobachten, wie sich die Motorradfahrer beim Übergang von einer Linkskurve in eine Rechtskurve „einen Moment lang" aus ihrer Schräglage aufrichten und geradlinig zur Fahrtrichtung fahren, bevor sie eine neue Schräglage einnehmen. Dieser Punkt, an dem eine Rechtskurve in eine Linkskurve bzw. eine Linkskurve in eine Rechts-
 kurve übergeht, heißt Wendepunkt.

In der Abbildung links ist ein Teilstück einer Grand-Prix-Rennstrecke für Motorradrennen abgebildet (,modelliert").
Wie lässt sich die jeweilige momentane Fahrtrichtung des Fahrers veranschaulichen?
Beschreibe die jeweilige Schräglage.
Wo durchfährt der Fahrer eine Linkskurve, wo eine Rechtskurve?
Wo liegt ein Wendepunkt?

Ein Wendepunkt einer Funktion trennt eine Rechtskurve von einer Linkskurve. Wir wollen die Begriffe Rechts- und Linkskurve mithilfe der Ableitung dieser Funktion präzisieren. Dazu betrachten wir die folgenden Funktionsgraphen und die Graphen ihrer jeweiligen Ableitungsfunktionen:

Durchlaufe die Graphen von f jeweils von links nach rechts. Betrachte dabei jeweils das Monotonieverhalten der Ableitungsfunktion f^{\prime} von f in den vorgegebenen Intervallen und versuche, die anschauliche Vorstellung von Rechts- bzw. Linkskurve mit Hilfe der 1. Ableitung von f zu definieren.
Definiere dann auch den Begriff Wendepunkt.

Merke:
G_{f} ist im Intervall I linksgekrümmt, falls G_{f} dort streng monoton steigt, d.h. falls dort gilt $\mathrm{f}^{\prime \prime}(\mathrm{x})>0$ © G_{f} ist im Intervall I rechtsgekrümmt, falls G_{f} dort streng monoton fällt, d.h. falls dort gilt $f^{\prime \prime}(x)<0$:
Der Punkt, der linksgekrümmte von rechtsgekrümmten Bereichen trennt, heißt Wendepunkt. Wendepunkte findet man an den Nullstellen von $f^{\prime \prime}(x)$, die einen Vorzeichenwechsel haben.

Beispiel:

Geben Sie die Intervalle an, in denen die Funktion f mit $f(x)=0,5 x^{4}-3 x^{2}+8$ links- bzw. rechtsgekrümmt ist. Bestimmen Sie die Koordinaten der Wendepunkte. Bestimmen Sie Art und Lage der Extrema.
$f(x)=0,5 x^{4}-3 x^{2}+8$
$f^{\prime}(x)=0,5 \cdot 4 \cdot x^{3}-3 \cdot 2 x=2 x^{3}-6 x=2 x\left(x^{2}-3\right) \Rightarrow x_{0}=0 ; x_{1}=\sqrt{3} ; x_{3}=-\sqrt{3}$ (potentielle Extremstellen)
$f^{\prime \prime}(x)=6 x^{2}-6=6\left(x^{2}-1\right) \Rightarrow x_{A}=1 ; x_{B}=-1$ beides einfache Nullstellen daher mit VZW
$G_{f^{\prime \prime}}$ (der zweiten Ableitung) ist eine nach oben geöffnete Parabel. Sie verläuft links und rechts der Nullstellen oberhalb der x-Achse, dazwischen jedoch darunter.
in $\left.I_{1}=\right]-\infty ;-1\left[\right.$ ist $f^{\prime \prime}(x)>0$ © d.h. G_{f} ist linksgekrümmt.
in $\left.I_{2}=\right]-1 ; 1\left[\right.$ ist $f^{\prime \prime}(x)<0 \%$ d.h. Gf ist rechtsgekrümmt.
in $\left.I_{3}=\right] 1 ; \infty\left[\right.$ ist $f^{\prime \prime}(x)>0 \odot$ d.h. G_{f} ist linksgekrümmt.
Die Wendepunkte sind $A(1 \mid f(1))=A(1 \mid 5,5)$ und $B(-1 \mid f(-1))=B(-1 \mid 5,5)$
Man erkennt leicht, dass G_{f} bei $(\sqrt{3} \mid 3,5)$ und bei $(-\sqrt{3} \mid 3,5)$ jeweils linksgekrümmt ist - dort also Minima vorliegen. Bei ($0 \mid 8$) liegt ein Maximum vor, weil dort $f^{\prime \prime}(0)=-6<0$ gilt, G_{f} also rechtsgekrümmt ist.
Merke:
Mit Hilfe der 2. Ableitung kann man entscheiden, ob an einer Extremstelle x_{0} ein Minimum oder ein Maximum vorliegt (vorausgesetzt $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{0}\right) \neq 0$)

Übungen:

1) Bestimmen Sie jeweils die Intervalle, in denen der Graph G_{f} der Funktion f links- bzw. rechtsgekrümmt ist.
a) $f(x)=\frac{1}{3} x^{3}-x$
b) $f(x)=\frac{1}{2} x^{2}+\sin x$
c) $f(x)=(x-1)^{3}$
d) $f(x)=\frac{1}{4} x^{4}-\frac{1}{2} x^{2}$
e) $f(x)=3 x-\frac{1}{2} \cos x$
f) $f(x)=x^{5}-x^{3}-2 x$
g) $f(x)=\frac{1}{2} x^{2}-x+2$
h) $f(x)=x^{5}-4 x^{4}$
i) $f(x)=\frac{1}{4} x^{4}-9 x^{3}+48 x^{2}+3 x-1$
j) $f(x)=\frac{1}{4}(x-2)^{4}$
k) $f(x)=x^{5}$
I) $f(x)=x^{4}+3 x^{3}+\frac{15}{8} x^{2}-2 x+2$
2) Skizzieren Sie einen Graphen, der jeweils genau die angegebenen charakteristischen Punkte besitzt:
a) einen Wendepunkt aber keinen Extrempunkt
b) einen Wendepunkt und sowohl einen (lokalen) Hoch- als auch einen (lokalen) Tiefpunkt
c) einen Wendepunkt, einen (lokalen) Hochpunkt aber keinen (lokalen) Tiefpunkt
d) zwei Wendepunkte aber kein (lokales) Extremum
e) zwei (lokale) Tiefpunkte, einen (lokalen) Hochpunkt und zwei Wendepunkte
f) einen (lokalen) Tiefpunkt, keine (lokalen) Hochpunkte aber zwei Wendepunkte
