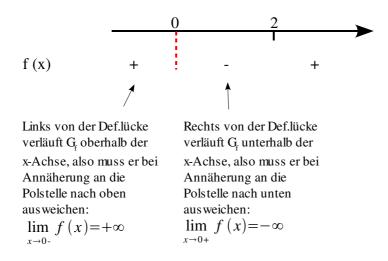
Klasse	Art	Schwierigkeit	Thema	S. 87
11	Lösung	XX	Kurvendiskussion	7

Hinweis: Die Aufgaben der Seite 87-89 sind am Ende des Lehrbuchs gelöst. Hier nun einige Ergänzungen/Vertiefungen:

b)
$$f(x) = \frac{x^2}{4} - \frac{2}{x} = \frac{x^3 - 8}{4x}$$
; $D = \mathbb{R} \setminus \{0\}$

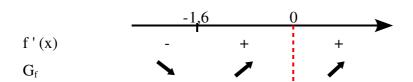
Die Funktion auf einen Bruch zu schreiben, vereinfacht i.d.R. die Findung der Nullstellen und die Bestimmung der Art der Definitionslücken.

Die Nullstelle x₀=2 und die einfache Polstelle x₁=0 teilen die x-Achse in drei Bereiche. Die Betrachtung der Vorzeichenbereiche der Funktion f (nicht zu Verwechseln mit den Monotoniebereichen, dies sind die Vorzeichenbereiche von f ' !!) ermöglicht die Bestimmung der Grenzwerte an der Polstelle:



Die Ableitung wird mit Hilfe der Quotientenregel berechnet: $f'(x) = \frac{x^3 + 4}{2x^2}$

Monotonietabelle:

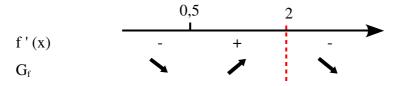


Auch die Monotonietabelle gibt die Grenzwerte des Graphen an den Polstellen wieder! Rest siehe Lösung im Buch s. 230

d) Zur Ableitung:

$$f'(x) = \frac{2x(x-2)^2 - (x^2-1)\cdot(2x-4)}{(x-2)^4} = \frac{2x(x-2) - (x^2-1)\cdot2}{(x-2)^3} = \frac{-4x+2}{(x-2)^3}$$

Monotonieverhalten:



Rest siehe Buch S.230