
6. Skalarprodukt von Vektoren - Größe von Winkeln

Definition: Unter dem Skalarprodukt zweier Vektoren \vec{a} und \vec{b} verstehen wir.

$$\stackrel{\rightarrow}{a} \cdot \stackrel{\rightarrow}{b} = \stackrel{\rightarrow}{a} | \cdot | b | \cdot \stackrel{\rightarrow}{\cos} \phi$$

Geometrische Bedeutung:

Das Skalarprodukt ist das Produkt aus der Länge des Vektors \vec{a} und der senkrechten Projektion des Vektors \vec{b} auf die Richtung von \vec{a} .

Definition: Das Skalarprodukt zweier Vektoren a und b können wir auch berechnen durch:

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Wichtig: Das Skalarprodukt zweier Vektoren ergibt immer eine Zahl (Skalar)!

Wichtigster Spezialfall: $\overrightarrow{a} \perp \overrightarrow{b} \iff \overrightarrow{a} \cdot \overrightarrow{b} = 0$

Übung: 108/2c, d; Eigenes Bsp. zu zwei senkrechten Vektoren; 4b; 6c; 8c; AB

HA: 109/7 8,d;