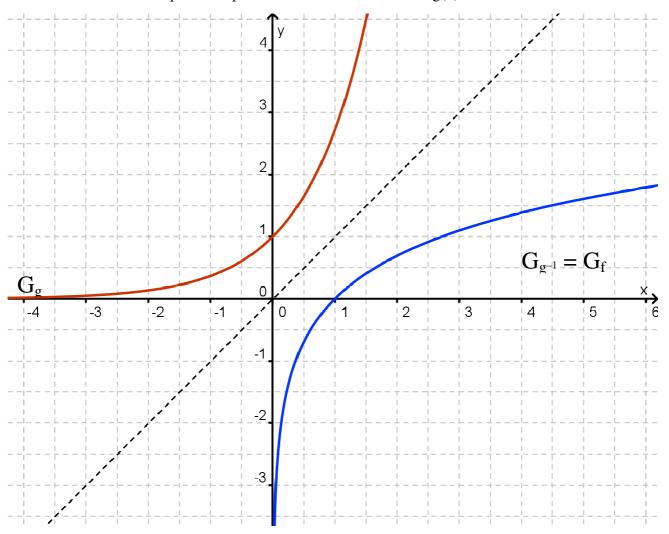
3. Die In-Funktion und Ableitungsregeln

Wir betrachten den Graph der Exponentialfunktion zur Basis e: $g(x) = e^{x}$



Da die Exponentialfunktion streng monoton steigend ist, ist sie umkehrbar. Geometrisch: Spiegelung an der Winkelhalbierenden des I. und III. Quadranten: y = x

Definition: Die Umkehrfunktion zur Exponentialfunktion zur Basis e heißt natürliche

Logarithmusfunktion.
Es gilt:
$$g(x) = e^{x} \Rightarrow g^{-1}(x) = f(x) = \ln x$$

Es gilt:

•
$$D_f = \mathbb{R}^+$$
, $W_f = \mathbb{R}$

•
$$D_f = \mathbb{R}^+$$
, $W_f = \mathbb{R}$
• $\ln 1 = 0$, $da e^0 = 1$
• $\ln e = 1$, $da e^1 = e$

•
$$\ln e = 1$$
, $da e^1 = e^1$

$$\bullet \quad \ln \frac{1}{e} = \ln e^{-1} = -1$$

- die ln-Funktion hat eine Nullstelle für x = 1 und ist streng monoton steigend
- die ln-Funktion hat die y-Achse als Asymptote; es gilt: $\lim \ln(x) = -\infty$ $x \rightarrow 0+0$

Die Lösung x der Gleichung : $e^x = y$ ist demnach: $x = \ln y$

d.h.
$$e^{\ln x} = x$$
 oder auch $\ln e^x = x$

"Funktion und Umkehrfunktion heben sich gegenseitig auf"

Beispiele:

•
$$e^{X} = 5$$
 \iff $ln e^{X} = ln 5$ \iff $x = ln 5$

•
$$e^{2x+1} = 1.5$$
 \Leftrightarrow \Leftrightarrow $\ln e^{2x+1} = \ln 1.5$ \Leftrightarrow $2x+1 = \ln (1.5)$
 $\Leftrightarrow 2x = \ln (1.5) - 1$ $\Leftrightarrow x = \frac{\ln (1.5) - 1}{2}$

•
$$\ln 2x = 3$$
 \Leftrightarrow $x = 0,5$ e^3 $e^{\ln 2x} = e^3$

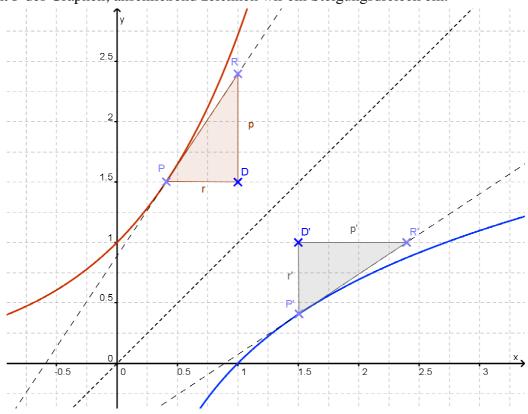
Rechenregeln für den Logarithmus (s. Merkhilfe bzw. Formelsammlung):

$$\ln (uv) = \ln (u) + \ln (v) \qquad \qquad \ln \frac{u}{v} = \ln u - \ln v$$

$$\ln u^z = z \ln u$$

Herleitung der Ableitungsregel für die In-Funktion

Wir betrachten wiederum den Graph der e-Funktion und eine Tangente an einen beliebigen Punkt P des Graphen; anschließend zeichnen wir ein Steigungsdreieck ein.



Es gilt:

• $P(x_p | y_p) \in Graphen der Exponentialfunktion; d.h. y_p = e^{x_p} \implies$ Steigung m der Tangente an der Stelle x_p des Graphen der e-Funktion :

$$m_{xp} = \frac{p}{r} = g'(x_p) = e^{x_p} = y_p$$

• $P'(y_p \mid x_p) \in Graphen der Logarithmusfunktion <math>\Rightarrow$ Steigung m der Tangente an der Stelle y_p des Graphen der In-Funktion :

$$f'(y_p) = m y_p = \frac{r}{p} = \frac{1}{g'(x_p)} = \frac{1}{e^{x_p}} = \frac{1}{y_p}$$

• Ersetze die Variable y_p durch x und wir erhalten für $f(x) = \ln(x)$:

Ableitung der In-Funktion:

$$f(x) = \ln(x) \implies f'(x) = \frac{1}{x}$$

Folgerung:

Eine Stammfunktion zu
$$f(x) = \frac{1}{x}$$
 $(x \neq 0)$ lautet: $F(x) = \ln |x|$

Ableitung der Funktion $k(x) = \ln (h(x))$:

$$k(x) = \ln (h(x)) \implies k'(x) = \frac{1}{h(x)} \cdot h'(x)$$

Aufgaben: S. 157/4/5/7/8/9/10

S. 158/ 12 / 13/ 14/ 16/ 17

S. 160/2/4b,d,e,g/5/8/9c/10/11

S. 162/3/5/6/7/9a,b