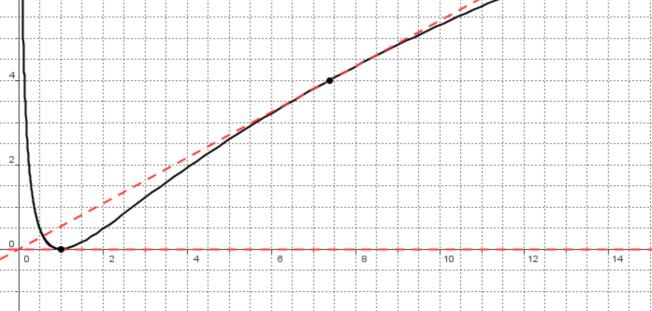
c) $\Lambda. Regiliel$: Reclimen NST: $(L \times)^2 = 0$ $L \times = 0$ $x = \Lambda$ $f'(x) = 2 \ln x \cdot \frac{1}{x} = 0$ $(=) L \times = 0$ $x = \Lambda$ $f'(x) = -\frac{1}{x} + \frac{1}{x}$ $TP(\Lambda | 0)$ = 3 Ehamptung

 \checkmark

b) Punkt at
$$G_{f} : (x_{0}|(l_{m}x_{0})^{2})$$

Tangentenshigung bei $x_{0} : m = \frac{\partial \ln x_{0}}{x_{0}} = f'(x_{0})$
=> Tangente : $y = \frac{\partial \ln x_{0}}{x_{0}} \cdot x_{0} + t$
Tangente rolant den d'un promy => $t = 0$
 $(x_{0}|(l_{m}x_{0})^{2}) \in G_{f} :$
 $(l_{m}x_{0})^{2} = \frac{2\ln x_{0}}{x_{0}} \cdot x_{0}$

 $(\ln x_0)^2 = 2\ln x_0$ Substitution: u= lm xo $u^2 = 2u$ $u^2 - du = 0$ u(u-d)=0 $u_1 = 0$ Ua = 2 Resubstitution O= In xo odes 2=hxo $\times_{o} = 1$ $\times_{o} = e^{2}$ Y = 0 $\underline{\gamma} = \frac{4}{e^2} \cdot x$ odes => 8 6 4



c) $F'(x) = \left(1 \cdot (lnx)^2 + x \cdot 2lnx \cdot \frac{d}{x} \right) - \left(2lnx + 2x \cdot \frac{d}{x} \right) + 2$ = $(l_{n\times})^{2}$ + $2l_{n\times}$ - $2l_{n\times}$ - $2+2 = (l_{n\times})^{2} = f(x)$ => Behauptury 8

